МОДЕЛИРОВАНИЕ ГЕОСИСТЕМ

ЛЕКЦИЯ 5

ТИПОЛОГИЯ и КЛАССИФИКАЦИЯ МОДЕЛЕЙ

ЧАСТЬ 2

Математические модели:

1). Определение и принципиальная форма выражения математической модели;

2). Типы математических моделей

Математической моделью системыоригинала

$$Y^0 = (V^0, X^0, \Sigma^0, F^0)$$

называется модель

$$Y = (V, X, \Sigma, F),$$

у которой в качестве элементов множеств V и X выступают математические переменные. Обычно это скалярные функции времени (t) на рассматриваемом интервале:

$$t_0 \le t \le t_n :$$

 $v_1(t), ..., v_k(t), x_1(t), ..., x_n(t).$

Структура таких моделей $\sum = (\sigma_1, ..., \sigma_k)$ представляет собой множество математических соотношений между этими переменными, которые обычно формулируются в виде уравнений и неравенств вида

$$\begin{split} &\sigma_{1}\left(v_{1},...,v_{k},x_{1},...,x_{n}\right)=0\\ &\sigma_{m}\left(v_{1},...,v_{k},x_{1},...,x_{n}\right)=0\\ &\sigma_{m+1}\left(v_{1},...,v_{k},x_{1},...,x_{n}\right)\leq0\\ &\sigma_{r}\left(v_{1},...,v_{k},x_{1},...,x_{n}\right)\leq0, \end{split}$$

связывающих между собой внешние и внутренние переменные модели.

Функция F = (F₁, ..., Fn) есть не что иное, как разрешающий оператор совокупности математических соотношений, позволяющих по заданным входам

$$v_1(t), ..., v_k(t); t_0 \le t \le t_n$$

с той или иной определенностью (от абсолютной детерминированности до размытого вероятностного описания) находить функции $\mathbf{x}_1(t), ..., \mathbf{x}_n(t)$ на интервале $t_0 \le t \le t_n$:

$$x_1(t) = F_1(v_1, ..., v_k, x_1^0, ..., x_n^0, t)$$

•••••

$$x_n(t) = F_n(v_1, ..., v_k, x_1^0, ..., x_n^0, t),$$

которые удовлетворяют приведенным выше уравнениям и неравенствам и заданным начальным условиям

$$x_1(t_0) = x_1^0, ..., x_n^0(t_0) = x_n^0.$$

Например:

Система из одной популяции, существующая в условиях изобилия корма и отсутствия врагов

Предположим:

- прирост популяции пропорционален достигнутой численности,
- удельная скорость прироста <u>г</u>
 зависит от t (внешний фактор),
 которая на рассматриваемом
 промежутке времени известна

Построение математической модели: Исходные данные:

- входная функции v(t),
 задающая динамику
 температуры окружающей
 среды при t₀ ≤ t ≤ t_n,
- множество X, состоящее из одного элемента действительной переменной х(t), обозначающей численность популяции в момент времени t.

Построение математической модели: Структура модели ∑

три математических соотношения:

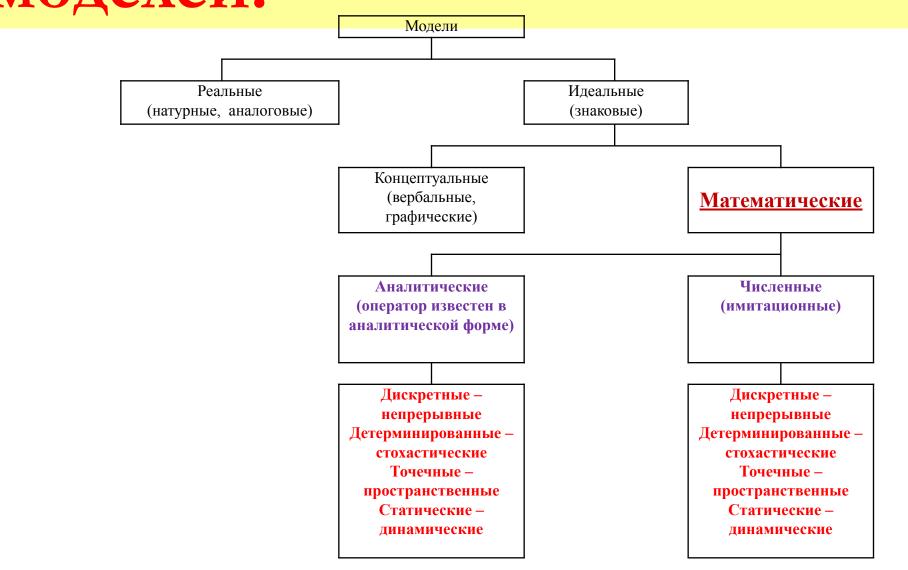
$$dx/dt = r(t) \cdot x$$

$$r(t) = \Theta(v(t))$$

$$x(t_0) = x_0.$$

- 1)выражает линейную зависимость скорости роста популяции от ее численности с меняющимся во времени коэффициентом удельного прироста r(t).
- ослужит математическим выражением зависимости r от температуры окружающей среды v: функция Ө (v) (температура ОС) известна.
- 3) задает начальную численность популяции при $t = t_0$.

Типы математических моделей:



Аналитические модели:

В зависимости от свойств <u>разрешающего</u> <u>оператора **F**</u>

Если для оператора **F** найдено **точное** аналитическое выражение, позволяющее для любых входных функций и начальных условий непосредственно определять значение переменных состояний $x_1, ..., x_n$ в любой нужный момент t, то модель называют аналитической.

Аналитические модели:

- обладают многими благоприятными свойствами, облегчающими их исследование и применение;
- но в подавляющем большинстве случаев нахождение аналитического выражения для разрешающего оператора **F** оказывается затруднительным или в принципе невозможным.

Численные модели:

- Если совокупность уравнений и неравенств, отображающих структуру модели, непротиворечива и полна, то нередко удается найти алгоритм (процедуру) численного решения этих уравнений с использованием электронновычислительной техники.
 - В результате реализация оператора F происходит в виде машинной программы, с помощью которой по входным и начальным данным рассчитываются значения переменных состояний \mathbf{x} (\mathbf{t}), ..., \mathbf{x}_n (\mathbf{t}) на интервале $\mathbf{t}_0 \leq \mathbf{t} \leq \mathbf{t}_n$.

Численные или имитационные модели.

Критерии определения

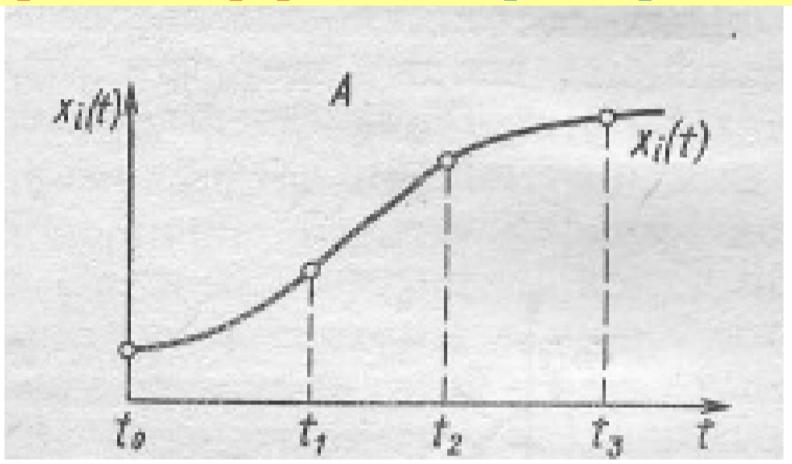
зависимости от степени определенности предсказания траектории $(x_1(t), ..., x_n(t))$ оператором **Г** или от того, **с какой степенью** вероятности математические модели прогнозируют изучаемые процессы

Принципиальные различия:

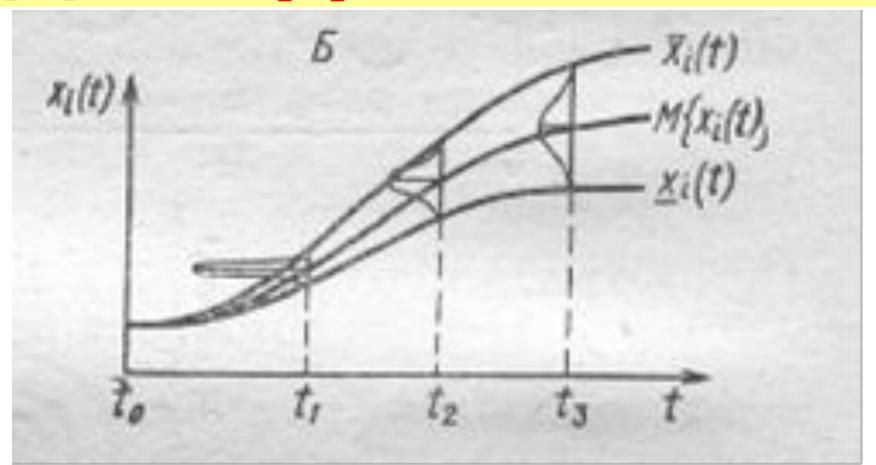
переменных состояния определяются однозначно (с точностью до ошибок вычисления). Стохастическая модель для каждой переменной х, дает распределение возможных значений, характеризуемое такими вероятностными показателями, как математическое ожидание $M\{xi\}$, среднее квадратическое отклонение $\sigma\{x\}$ и Τ.П.

детерминированной модели значения

Графические формы: Детерминированная



Графические формы: Стохастическая



Резюме:

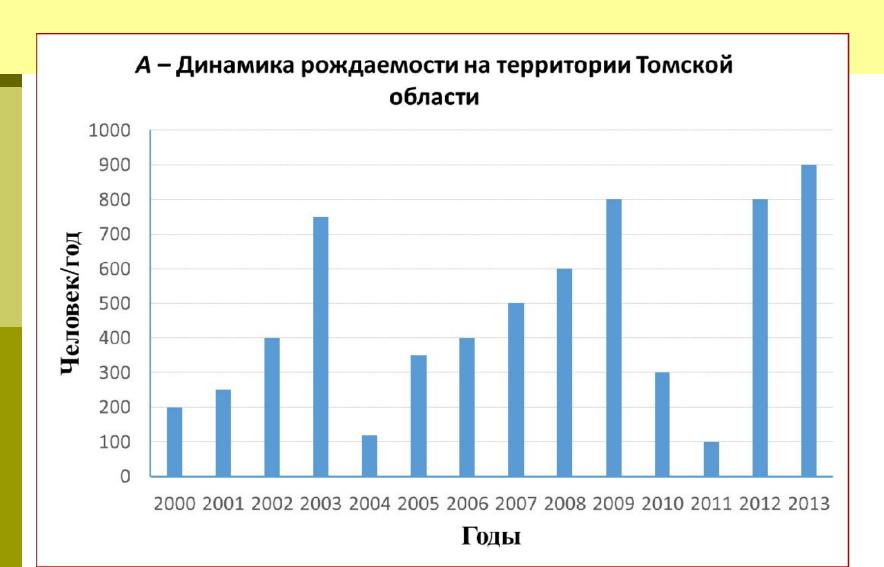
- 1) предсказывает для любого момента времени t единственное значение переменной $\mathbf{x}_{i}(t)$.
- 2) показывает интервал $[\underline{x}_{i}(t), X_{i}(t)]$, содержащий величину $\underline{x}_{i}(t)$ и ее распределение на этом интервале.

Дискретные и непрерывные модели: <u>Критерии определения:</u>

характер временного описания динамики переменных состояния $\mathbf{x}_{i}(t)$

- 1) поведение системы описывается на фиксированной последовательности моментов времени $t_0 < t_1 < ... < t_i < ... < t_n$ или в определенных точках пространства;
- 2) значения переменных можно рассчитать для любой точки пространственного или временного интервала.

Дискретные и непрерывные модели: *Примеры*: Дискретная модель



Дискретные и непрерывные модели: *Примеры*: Непрерывная модель

Дискретные динамические модели: Вид: Модели с фиксированным шагом во времени $\Delta t = t_i - t_{i-1}$, который не может быть изменен без глубокой перестройки всей модели. Например, в моделях динамики популяции организмов с непрерывающимися поколениями, сменяющимися только один раз в год, оинимается $\Delta t = 1$ год

Дискретные динамические модели: <u>**Bud:**</u> шаг по времени $\Delta t = может$ неограниченно уменьшаться (в пределах возможностей используемой ЭВМ или программного обеспечения) = По детальности описания временных изменений приближаются к непрерывным: модели, получающиеся в результате дискретизации непрерывного описания изучаемой системы в процессе приближенного численного решения дифференциальных уравнений

Точечные и пространственные модели:

В зависимости от характера описания пространственного строения

- 1) пространственное строение экосистемы не рассматривается, т.е. в качестве переменных состояния фигурируют какие-либо переменные, в том числе зависящие от времени $(\mathbf{x}_i(t), \mathbf{i} = \mathbf{l}, ..., \mathbf{n}) = \mathbf{m}$ одели с сосредоточенными значениями или точечные моделями. В первом случае это статические точечные модели, во втором динамические.

 2) переменные состояния \mathbf{x}_i зависят от пространственных координат (одной или нескольких), в том числе и с учетом
- тоременные состояния х_і зависят от пространственных координат (одной или нескольких), в том числе и с учетом фактора времени, называются моделями с распределенными значениями или пространственными моделями

Точечные модели:

Пример условия статической точечной модели:

- 1). При моделировании водной экосистемы в качестве переменных состояния можно использовать усредненные по площади и суммированные по глубине значения:
- □биомасс популяций,
- - 2) Каждая в отдельности лимносистема может рассматриваться как одна точка при изучении озер в каких-либо специальных научных программах или при выполнении комплексных экологических изысканий.

Точечные модели:

Пример графического вида статической точечной модели:



Схема размещения точек опробывания озер в составе комплексных экологических изысканий в районе размещения памятника природы «Озеро Мундштучное»

Пространственные модели:

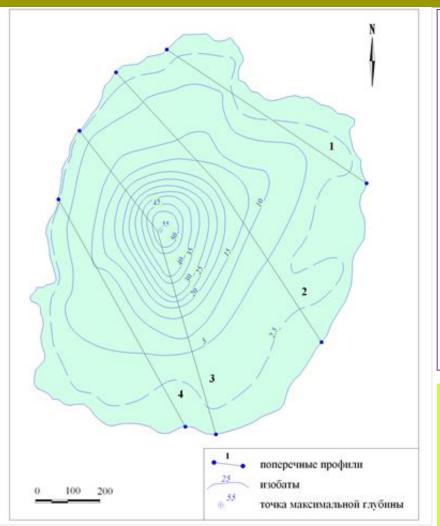
Пример условия статической пространственной модели:

Если в модели **учитывается гетерогенность** по глубине (координата z), т.е. $\mathbf{x_i} = \mathbf{x_i}$ (z, t), то получается более детальная динамическая модель с распределенными значениями по глубине, которые также могут быть осредненными по плоскости (x, y).

Примером статической пространственной модели, значения переменных состояния в которой выведены на плоскость, является рельеф дна или распределение глубин в границах акватории любого исследуемого водоема.

Пространственные модели:

Пример графического вида статической пространственной модели:



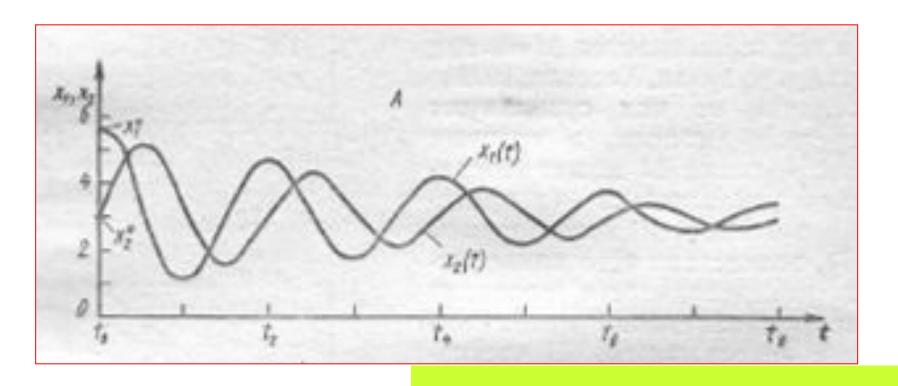
При описании мелкого, хорошо перемешиваемого П0 вертикали, H₀ гетерогенного ПО плоскости водоема (например, случае разного механического состава донных отложений) переменных качестве состояния можно использовать функции вида $x_i = x_i$ (x, y, t). Наконец, вводя все три пространственные координаты xi = xi(x, y, y)получить трехмерную онжом динамическую модель с пространственно распределенными значениями.

Схема акватории озера Мундштучное с изобатами, м

О способах визуального представления результатов моделирования. Динамические модели:

- различные графики и схемы для визуализации;
- □ способ развертки во времени =
 реализуется путем построения таблиц
 или графиков изменения входных
 переменных и переменных состояния
 как функций времени t

О способах визуального представления результатов моделирования. Динамические модели:



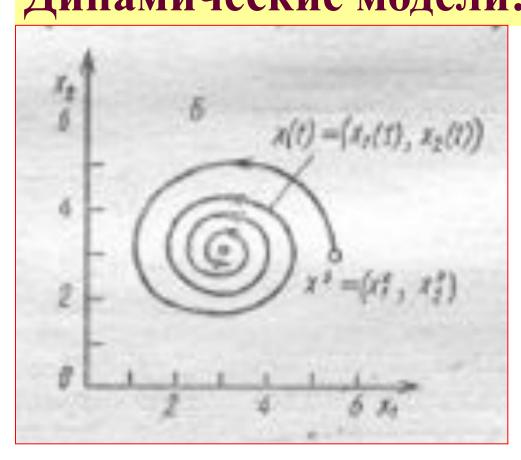
Развертка во времени

О способах визуального представления результатов моделирования.

Динамические модели:

- 1). При большом числе переменных в дополнение к способу развертки во времени используется способ фазовых портретов.
- 2). В этом случае на график наносится изображение траектории системы в пространстве состояний (при n=2 или 3) или проекции этой траектории на координатные плоскости (x_i, x_j), образованные различными парами координат при n > 3.
- 3). Время на фазовом портрете присутствует неявно, через указание тем или иным способом направления движения изображающей точки вдоль траектории, например, с помощью стрелок или отметок времени вдоль траектории.

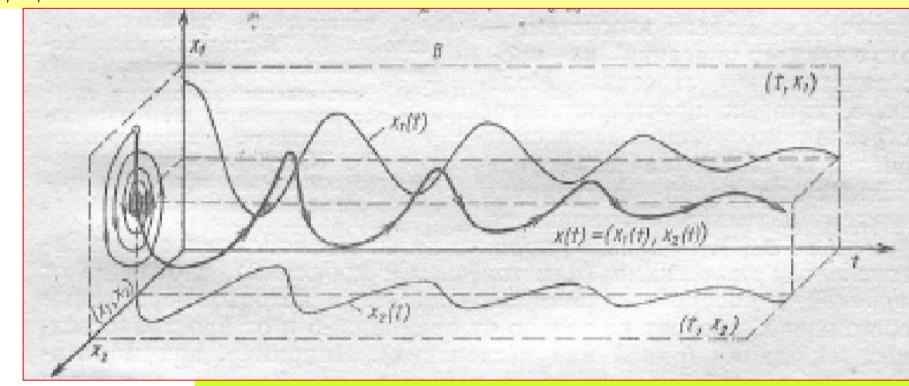
О способах визуального представления результатов моделирования. Динамические модели:



Фазовый портрет

О способах визуального представления результатов моделирования.

Динамические модели:



Соотношение развертки во времени и фазового портрета

Классификация моделей по масштабности научных взглядов и проблем:

- локальные модели,
 освещающие действительность
 с какой-либо узкой
 («местной») точки зрения,
- парадигмы модели общего значения, представляющие ценность для широкого круга ученых

Парадигма:

(от греческого paradeigma)

- пример, образец:
- 1) строго научная теория, воплощенная в системе понятий, выражающих существенные черты действительности;
- 2) исходная концептуальная схема, модель постановки проблем и их решения, методов исследования, господствующих в течение определенного исторического периода в науке.

Классификация моделей по пространственному масштабу моделирования:

- локальные модели топологический уровень,
- региональные модели региональный уровень,
- глобальные модели планетарный и субпланетарный уровень.