

М.А.Вигура, О.А.Кеда, А.Ф.Рыбалко, Н.М.Рыбалко, А.Б.Соболев

Математика Поточная практика 7.5 Аналитическая геометрия Поверхности второго порядка

УГТУ-УПИ 2007г.

Цель занятия:

- 1. Овладеть соответствующим математическим аппаратом для дальнейшего изучения курса математики, демонстрировать и использовать математические методы в ходе изучения специальных дисциплин для будущей профессиональной деятельности.
- 2. Запомнить канонические уравнения поверхностей и демонстрировать способность изобразить эллипсоид, гиперболоиды и параболоиды по их сечениям.

Формируемые компетенции по ФГОС:

ОНК1: способность и готовность использовать фундаментальные математические законы в профессиональной деятельности, применять методы математического анализа и теоретического исследования.

ИК1: способность использовать современные средства вычислительной техники, коммуникаций и связи.

ИК4: готовность работать с информацией из различных источников (сбор, обработка, анализ, систематизация, представление).

СЛК3: способность самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии.

1.Теоретическая

<u>часть</u>

2.3адачи

3.Решения задач

Оглавление

- 2. Гиперболоиды
 - -Однополостный гиперболоид
 - -Двуполостный гиперболоид
- **3. Конус**
- 4. Параболоиды
 - -Эллиптический параболоид
 - -Гиперболический параболоид
- 5. Цилиндры
 - -Эллиптический
 - -Гиперболический
 - -Параболический
- 6. Пары плоскостей
 - -пересекающихся
 - -параллельных
 - -сливающихся
- 7. Поверхности

Оглавление:

Оглавление:

Задача №:

1	<u>11</u>
<u>2</u>	<u>12</u>
<u>3</u>	<u>13</u>
<u>4</u>	
<u>5</u>	
<u>6</u>	
<u>7</u>	
<u>8</u>	
<u>9</u>	
<u>10</u>	

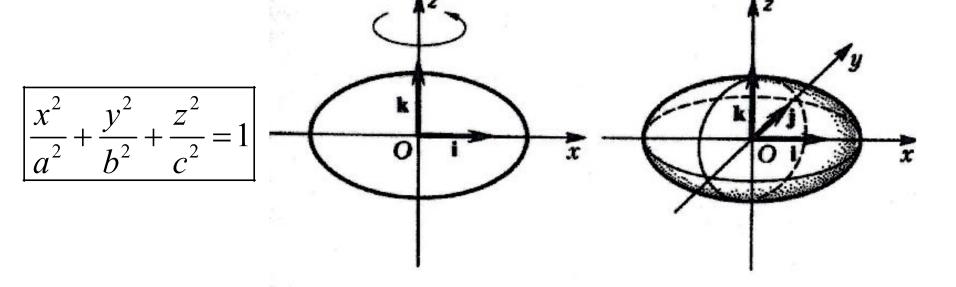
Оглавление:

Решение задачи №:

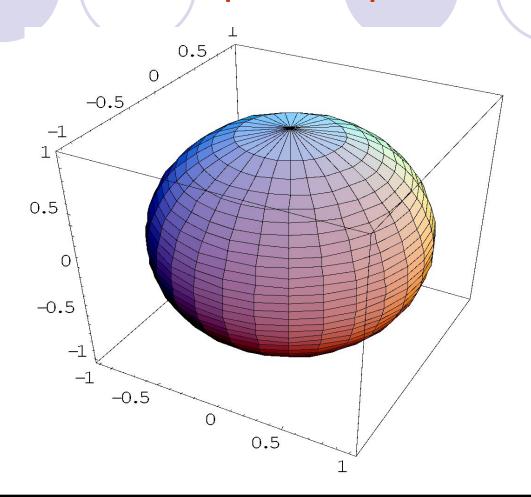
1	11
<u>2</u>	<u>12</u>
<u>3</u>	<u>13</u>
<u>4</u>	
<u>5</u>	
<u>6</u>	
<u>7</u>	
<u>8</u>	
<u>9</u>	
<u>10</u>	

Оглавление:

1.Эллипсоид



Оглавление:

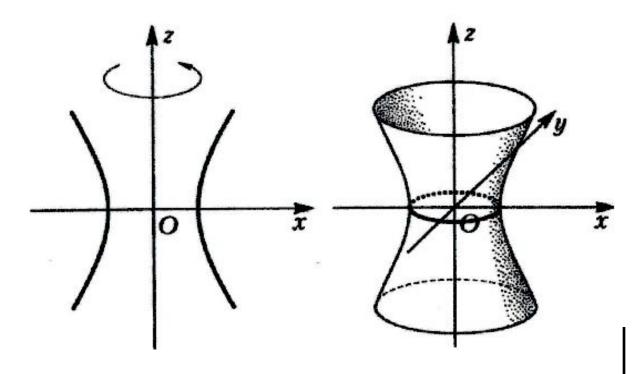


Оглавление:

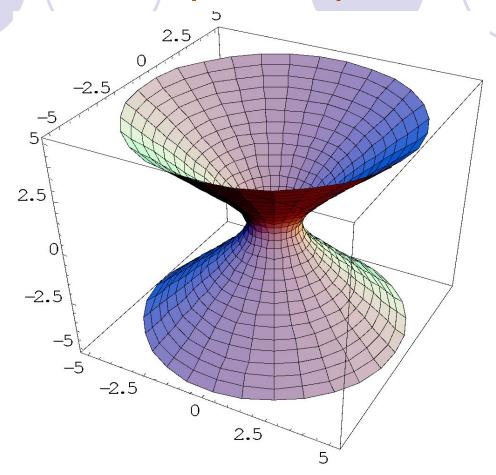
2.Гиперболоиды

Однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

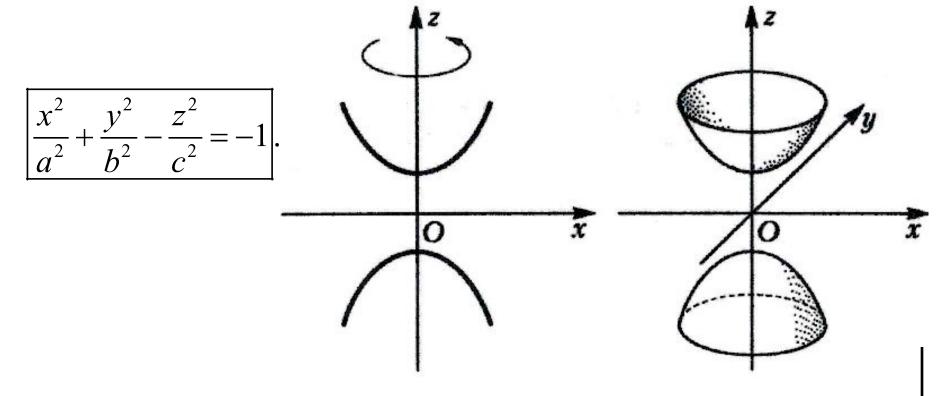


Оглавление:

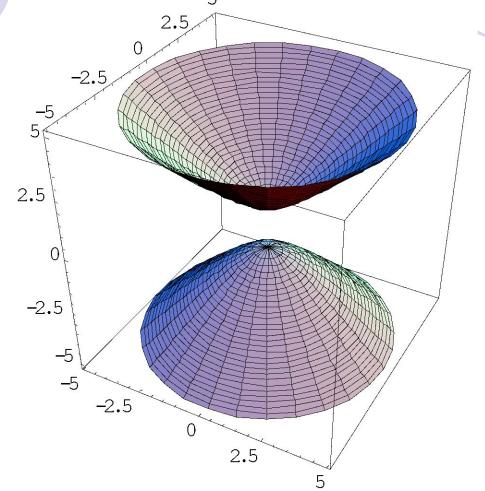


Оглавление:

Двуполостный гиперболоид



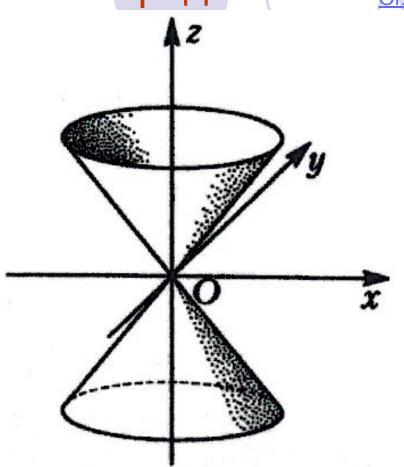
Оглавление:



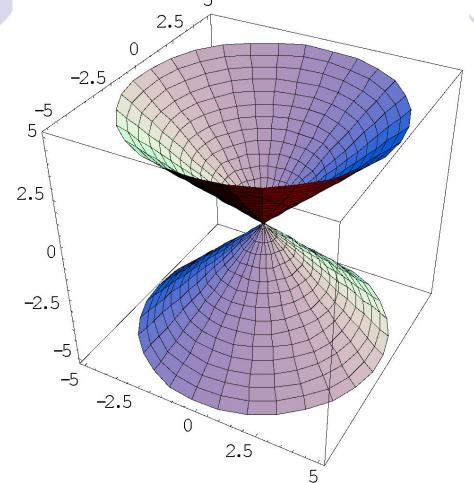
Оглавление:

3.Конус

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$



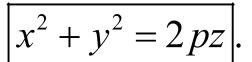
Оглавление:



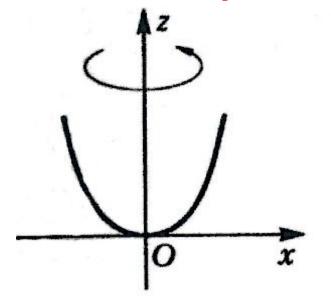
Оглавление:

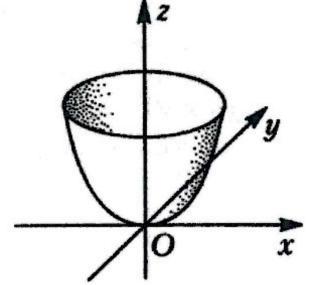
4.Параболоиды

Эллиптический параболоид

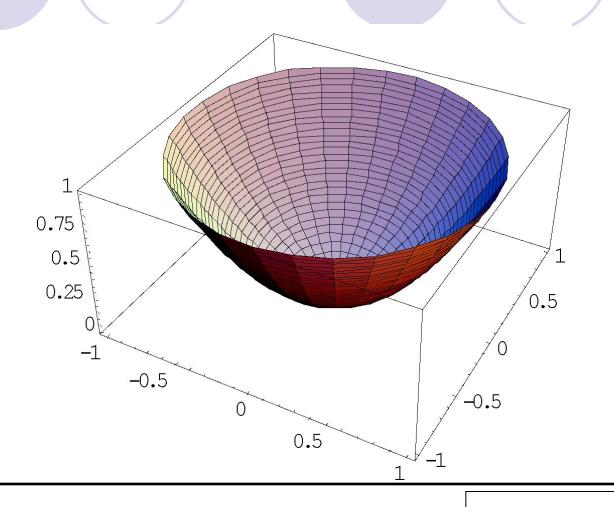


$$\frac{x^2}{p} + \frac{y^2}{q} = 2z$$





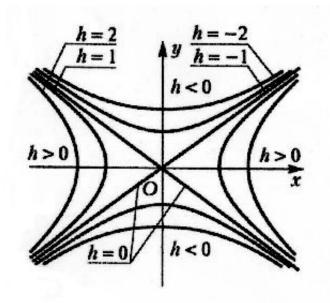
Оглавление:

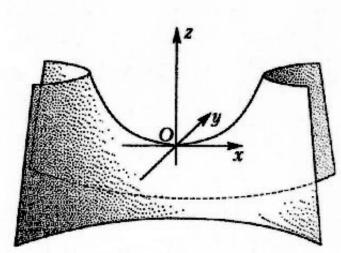


Оглавление:

Гиперболический параболоид

$$\frac{x^2}{p} - \frac{y^2}{q} = 2z$$



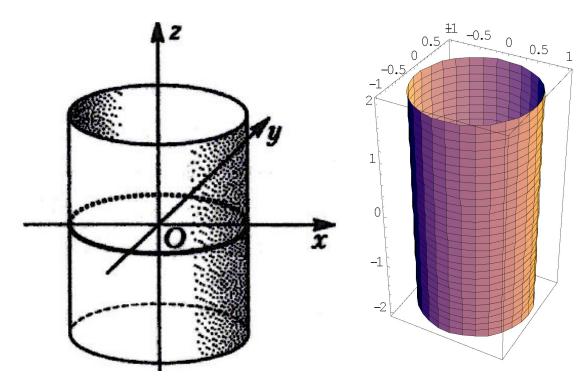


Оглавление:

5.Цилиндры

эллиптический

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

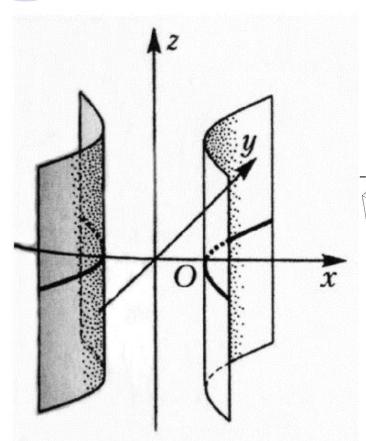


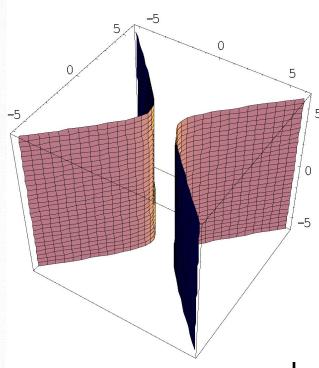
Оглавление:

5.Цилиндры

гиперболический

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

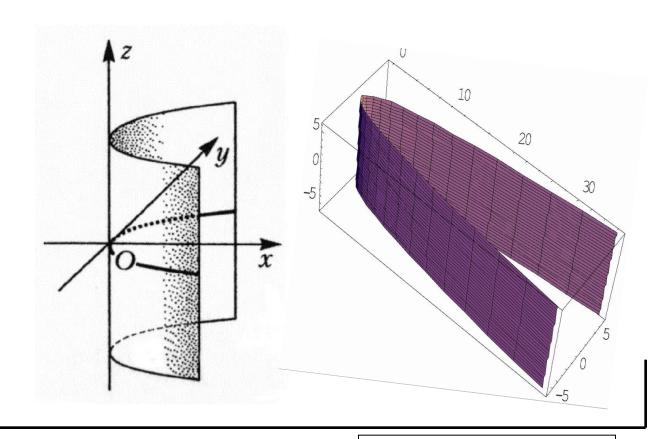




Оглавление:

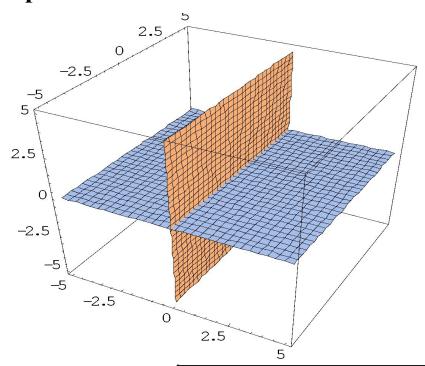
параболический

$$y^2 = 2px$$



Оглавление:

6.Пары плоскостей

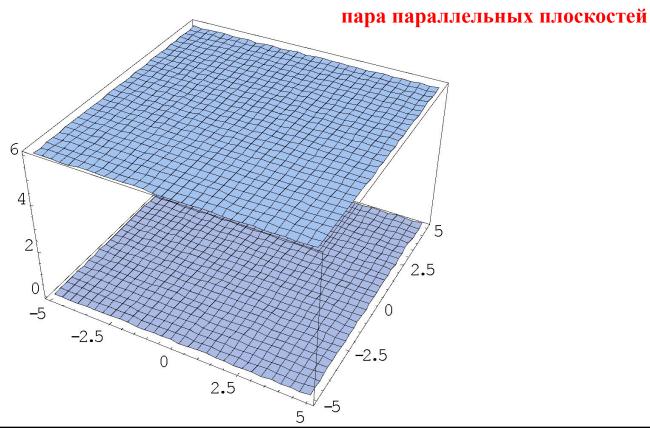


пара пересекающихся плоскостей

$$(A_1x + B_1y + C_1z + D_1) \cdot (A_2x + B_2y + C_2z + D_2) = 0$$

Оглавление:

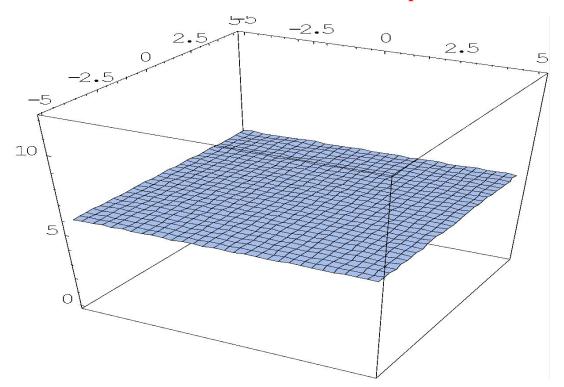
6.Пары плоскостей



Оглавление:

6.Пары плоскостей

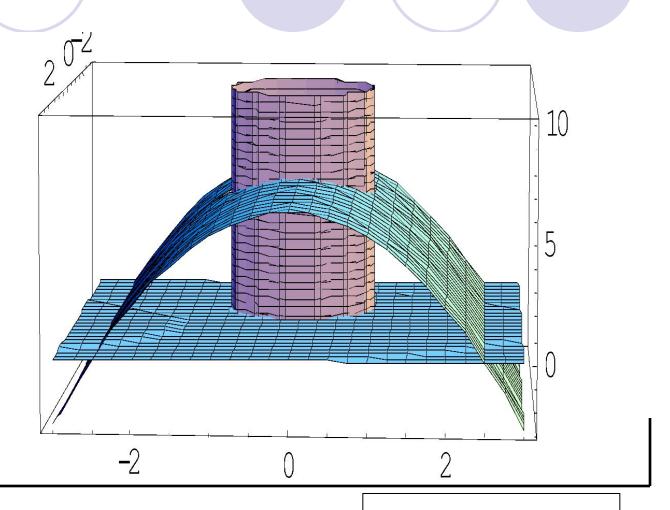
пара сливающихся плоскостей



Поверхности второго порядка Оглавление: 7. Поверхности 10 5 0

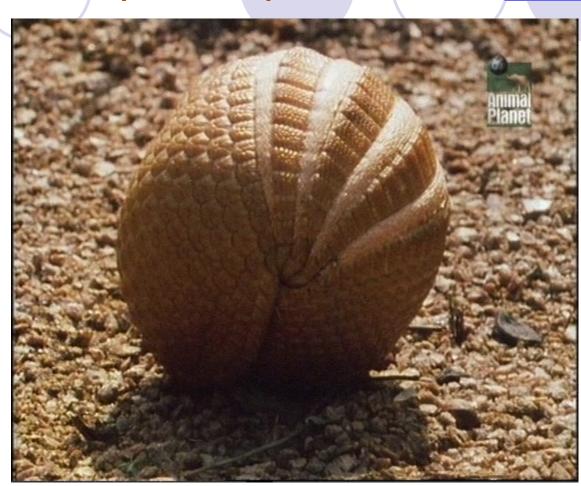
Оглавление:

7. Поверхности



Оглавление:

7. Поверхности



Броненосец

Оглавление:

7. Поверхности

Оглавление:

7.Поверхности

Оглавление:

Установите тип поверхности, заданной уравнением

$$x^2 - y^2 + z^2 + 4 = 0.$$

Задача 1

Ответ: Двуполостный гиперболоид

Оглавление:

Установите тип поверхности, заданной уравнением

$$x^2 + y^2 + z = 2$$

Задача 2

Ответ: Параболоид

Оглавление:

Установите тип указанной поверхности и постройте ее:

$$1.x^2 + y^2 - z + 2 = 0$$

$$2.x^2 + y^2 = 0$$

$$3.x^2 - y^2 = 0$$

$$4.x^2 = 1$$

$$5.x^2 + z^2 = 0$$

Задача 3

Ответ:

Оглавление:

Составьте уравнения проекций на координатные плоскости сечения эллиптического параболоида

$$x = y^2 + z^2$$

плоскостью

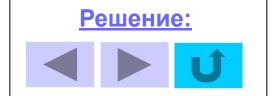
$$x + 2y - z = 0.$$

Задача 4

$$x^2 + 4xy + 5y^2 - x = 0$$

OTBET:
$$x^2 - 2xz + 5z^2 - 4x = 0$$

$$y^2 + z^2 + 2y - z = 0$$



Оглавление:

Составьте уравнение поверхности, образованной вращением кривой

$$\begin{cases} z = x^2, \\ y = 0 \end{cases}$$

вокруг оси OX.

Задача 5

OTBET: $y^2 + z^2 = x^4$.

Оглавление:

Найдите общие точки поверхности

$$x^2 + y^2 + z^2 - 4x - 6y + 2z - 67 = 0$$

и прямой

$$\frac{x-5}{3} = \frac{y}{2} = \frac{z+25}{-2}.$$

Задача 6

Ответ:Нет

Оглавление:

Найдите общие точки поверхности
$$\frac{x^2}{3} + \frac{y^2}{6} = 2z$$
 и плоскости $3x - y + 6z - 14 = 0$

Задача 7

OTBET:
$$\frac{4(x+1.5)^2}{67} + \frac{2(y-1)^2}{67} = 1$$

Оглавление:

Составьте уравнение цилиндра, образующие которого параллельны вектору $l = \{2; -3; 4\}$, а направляющая задана уравнениями

$$\begin{cases} x^2 + y^2 = 9, \\ z = 1. \end{cases}$$

Задача 8

OTBET: $16x^2 + 16y^2 + 13z^2 - 16xz + 24yz + 16x - 24y - 26z = 131$.

Оглавление:

Составьте уравнение конуса с вершиной в точке S(0;0;5) и направляющей

$$\begin{cases} \frac{x^2}{4} + y^2 = 1, \\ z = 0. \end{cases}$$

Задача 9

OTBET:
$$\frac{X^2}{4} + Y^2 = \frac{(z-5)^2}{25}$$

Оглавление:

Найдите общие точки поверхности

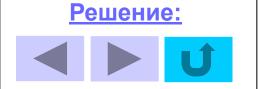
$$\frac{x^2}{3} + \frac{y^2}{6} = 2z$$

и плоскости

$$3x - y + 6z - 14 = 0$$

Задача 10

OTBET: $\frac{4(x+1.5)^2}{67} + \frac{2(y-1)^2}{67} = 1$

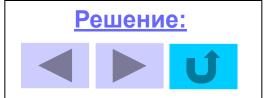


Оглавление:

Составьте уравнение сферы с центром в точке (3,-5,-2), если плоскость 2x-y-3z+11=0 касается сферы.

Задача 11

OTBET:
$$(x-3)^2 + (y+5)^2 + (z+2)^2 = 56$$



Оглавление:

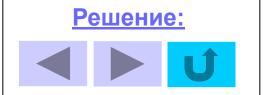
Составьте уравнение сферы, проходящей через точки M_1 (3,1,–3)

 $M_2(-2,4,1)$, $M_3(-5,0,0)$, центр которой лежит на плоскости

$$2x + y - z + 3 = 0$$

Задача 12

OTBET:
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 49$$



Оглавление:

Методом сечений исследуйте поверхность, заданную уравнением

$$x^2 + y^2 - z^2 = 4$$

Задача 13

Ответ: Однополостный гиперболоид вращения

Оглавление:

Перенесем константу в правую часть уравнения и разделим обе части уравнения на число 4.

Получим

$$\frac{x^2}{4} + \frac{z^2}{4} - \frac{y^2}{4} = -1.$$

Это уравнение задает двуполостный гиперболоид вращения с осью OY.

Решение задачи 1

Ответ: Двуполостный гиперболоид

Оглавление:

$$x^{2} + y^{2} + z = 2$$
, $x^{2} + y^{2} = -(z - 2)$

параболоид вращения с осью OZ, вершина которого находится в точке (0;0;2), выпуклость обращена вверх.

Решение задачи 2

Ответ: Параболоид

Оглавление:

- 1) параболоид вращения;
- 2) ось *оz*;
- 3) две пересекающиеся плоскости $x = \pm y$;
- 4) две плоскости $x = \pm 1$, параллельные плоскости *zoy*;
- 5) круговой цилиндр с образующей, параллельной оси оу.

Решение задачи 3

Ответ:

Оглавление:

Сечение параболоида плоскостью задается системой уравнений:

$$\begin{cases} x = y^2 + z^2, \\ x + 2y - z = 0. \end{cases}$$

Этой системе соответствует некоторая линия в пространстве. Чтобы найти проекцию этой линии на координатную плоскость OXY, следует исключить из этой системы переменную z, в результате получаем $x^2 + 4xy + 5y^2 - x = 0$.

Аналогично находятся остальные проекции:

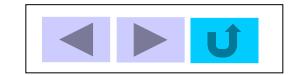
на плоскость
$$OXZ$$
: $x^2 - 2xz + 5z^2 - 4x = 0$, на плоскость OYZ : $y^2 + z^2 + 2y - z \equiv 0$.

Решение <u>задачи 4</u>

$$x^2 + 4xy + 5y^2 - x = 0$$

OTBET:
$$x^2 - 2xz + 5z^2 - 4x = 0$$

 $y^2 + z^2 + 2y - z = 0$



Оглавление:

Сечение искомой поверхности плоскостью $x = x_0$, перпендикулярной оси вращения - окружность с центром в точке $C(x_0,0,0)$ и радиусом $R = z(x_0)$: $y^2 + z^2 = x_0^4$.

Для произвольного x_0 получаем уравнение поверхности вращения $y^2 + z^2 = x^4$.

Решение задачи 5

ОТВЕТ: $y^2 + z^2 = x^4$.

Оглавление:

S:
$$x^2 + y^2 + z^2 - 4x - 6y + 2z - 67 = 0$$
,
 $(x-2)^2 + (y-3)^2 + (z+1)^2 = 9^2 - \text{chepa}$.
L: $\frac{x-5}{3} = \frac{y}{2} = \frac{z+25}{-2} \Rightarrow \begin{cases} x = 5+3t, \\ y = 2t, \\ z = -25-2t. \end{cases}$

Подстановка этих значений переменных в уравнение поверхности приводит к квадратному уравнению для t с отрицательным дискриминантом. Следовательно, действительных значений t не существует, и поверхность не имеет общих точек с прямой, которая проходит вне сферы. Решение задачи 6

Ответ: Нет

Оглавление:

Общие точки поверхностей:
$$\begin{cases} \frac{x^2}{3} + \frac{y^2}{6} = 2z, \\ 3x - y + 6z - 14 = 0 \end{cases}$$

Приравнивая значения 2z из этих уравнений, получим

$$\frac{x^2}{3} + \frac{y^2}{6} = \frac{y}{3} - x + \frac{14}{3}$$
.

Выделим полные квадраты, получим уравнение эллипса

$$\frac{4(x+1.5)^2}{67} + \frac{2(y-1)^2}{67} = 1$$

- линию пересечения эллиптического параболоида и плоскости.

Решение задачи 7

OTBET:
$$\frac{4(x+1.5)^2}{67} + \frac{2(y-1)^2}{67} = 1$$

Оглавление:

Если M(x;y;z) - произвольная точка прямой, а N(X;Y;1) — фиксированная точка направляющей, через которую проходит прямая, называемая образующей.

Множество точек искомой поверхности образовано точками, лежащими на прямых, проходящих через точку направляющей параллельно вектору l. Канонические уравнения этих прямых:

$$\frac{x-X}{2} = \frac{y-Y}{-3} = \frac{z-1}{4} \Rightarrow X = \frac{1}{2}(1+2x-z), Y = \frac{1}{4}(-3+4y+3z).$$

Подставим эти выражения в уравнение $X^2 + Y^2 = 9$, которому удовлетворяют координаты точек направляющей, получим уравнение цилиндрической поверхности:

$$16x^2 + 16y^2 + 13z^2 - 16xz + 24yz + 16x - 24y - 26z = 131.$$

Решение задачи 8

OTBET: $16x^2 + 16y^2 + 13z^2 - 16xz + 24yz + 16x - 24y - 26z = 131$.

Оглавление:

Пусть M(x;y;z) - произвольная точка прямой, а N(X;Y;0) - фиксированная точка направляющей, через которую проходит прямая, называемая образующей.

Множество точек искомой поверхности образовано точками, лежащими на прямых, проходящих через некоторую точку направляющей и точку S.

Составим канонические уравнения этих прямых

$$\frac{x}{X} = \frac{y}{Y} = \frac{z - 5}{-5} \Rightarrow X = -\frac{5x}{z - 5}, Y = -\frac{5y}{z - 5}.$$

Подставим эти выражения в уравнение направляющей

$$\frac{X^2}{4} + Y^2 = 1,$$

получим искомое уравнение конической поверхности:

$$\frac{X^2}{4} + Y^2 = \frac{(z-5)^2}{25}.$$

Решение задачи 9

OTBET:
$$\frac{X^2}{4} + Y^2 = \frac{(z-5)^2}{25}$$

Оглавление:

Общие точки поверхностей удовлетворяют $\begin{cases} \frac{x^2}{3} + \frac{y^2}{6} = 2z, \\ 3x - y + 6z - 14 = 0, \end{cases}$

Приравнивая значения 2z, выраженные из этих уравнений, получим, что $\frac{x^2}{3} + \frac{y^2}{6} = \frac{y}{3} - x + \frac{14}{3}$. Выделение полных квадратов переменных приводит к уравнению эллипса $\frac{4(x+1,5)^2}{67} + \frac{2(y-1)^2}{67} = 1$, который является линией пересечения эллиптического параболоида и плоскости.

Решение задачи 10

OTBET:
$$\frac{4(x+1,5)^2}{67} + \frac{2(y-1)^2}{67} = 1$$

Оглавление:

Расстояние от центра сферы до касательной плоскости равно радиусу сферы:

$$R = \frac{\left|3 \cdot 2 - (-5) - 3(-2) + 11\right|}{\sqrt{2^2 + (-1)^2 + (-3)^2}} = \frac{28}{\sqrt{14}} = 2\sqrt{14}.$$

Уравнение сферы:

$$(x-3)^2 + (y+5)^2 + (z+2)^2 = 56$$
.

Решение задачи 11

OTBET: $(x-3)^2 + (y+5)^2 + (z+2)^2 = 56$

Оглавление:

Уравнение сферы:
$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2$$
.

$$M_1(3,1,-3), M_2(-2,4,1), M_3(-5,0,0) \in S$$
:

$$\begin{cases} (3-x_0)^2 + (1-y_0)^2 + (-3-z_0)^2 = R^2, \\ (-2-x_0)^2 + (4-y_0)^2 + (1-z_0)^2 = R^2, \\ (-5-x_0)^2 + (0-y_0)^2 + (0-z_0)^2 = R^2, \\ 2x_0 + y_0 - z_0 + 3 = 0 \end{cases}$$

$$\begin{cases} x_0^2 + y_0^2 + z_0^2 - 6x_0 - 2y_0 + 6z_0 + 19 = R^2, \\ x_0^2 + y_0^2 + z_0^2 + 4x_0 - 8y_0 - 2z_0 + 21 = R^2, \\ x_0^2 + y_0^2 + z_0^2 + 10x_0 + 25 = R^2, \\ 2x_0 + y_0 - z_0 + 3 = 0. \end{cases}$$

Решение задачи 12

OTBET: $(x-1)^2 + (y+2)^2 + (z-3)^2 = 49$

Оглавление:

Вычитая из третьего уравнения второе и из второго первое, для координат центра сферы получаем равносильную систему

$$\begin{cases} 3x_0 + 4y_0 + z_0 = -2, \\ 5x_0 - 3y_0 - 4z_0 = -1, \\ 2x_0 + y_0 - z_0 = -3, \end{cases}$$

откуда $x_0 = 1$, $y_0 = -2$, $z_0 = 3$ и R = 7. Уравнение сферы

 $(x-1)^2 + (y+2)^2 + (z-3)^2 = 49$

Решение задачи 12

OTBET:
$$(x-1)^2 + (y+2)^2 + (z-3)^2 = 49$$

Оглавление:

$$x^{2} + y^{2} - z^{2} = 4$$
, $x^{2} + y^{2} = z^{2} + 4$

Рассмотрим сечения поверхности плоскостями z = h.

В сечении получаются окружности с центром на оси Oz и радиусом $R = \sqrt{h^2 + 4}$.

Поверхность является поверхностью вращения вокруг оси Oz, точки поверхности существуют при любых значениях z.

Рассмотрим осевое сечение плоскостью Oxz $(y=0): x^2 - z^2 = 4$.

Решение задачи 13

Ответ: Однополостный гиперболоид вращения

Оглавление:

Приведем к каноническому виду

$$\frac{x^2}{4} - \frac{z^2}{4} = 1$$
 – уравнение гиперболы,

Ox — действительная ось, Oz — мнимая ось.

Поверхность получена вращением гиперболы относительно ее мнимой оси, представляет однополостный гиперболоид вращения (oz – ось симметрии, oxy – плоскость симметрии).

Решение задачи 13

Ответ: Однополостный гиперболоид вращения

В результате студент должен уметь

строить поверхности второго порядка по их параллельным сечениям.

Перечень источников, список дополнительной литературы по теме.

- 1. Сборник задач по математике для втузов: В 4 ч. Ч. 1: Векторная алгебра и аналитическая геометрия. Определители и матрицы системы линейных уравнений. Линейная алгебра. Основы общей алгебры / А. В. Ефимов, А. Ф. Каракулин, И. Б. Кожухов и др. / Под ред. А. В. Ефимова, А. С. Поспелова. 4-е изд., перераб. и доп. М.: Физматлит, 2003. 288 с.: ил.; 21 см. ISBN 5-940520-34-0.
- 2. Клетеник, Давид Викторович. Сборник задач по аналитической геометрии: Учеб. пособие для студентов вузов / Под ред. Н.В. Ефимова. 15-е изд. М.: Наука. Физматлит, 1998. 223с. ISBN 5-02-015080-0.
- 3. Данко, Павел Ефимович. Высшая математика в упражнениях и задачах: Учеб. пособие для вузов: В 2 ч. Ч. 1 / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. 6-е изд. М.: ОНИКС 21 век: Мир и образование, 2003. 304с.: ил.; 22 см. ISBN 5-329-00326-1.
- 4. Элементы аналитической геометрии и линейной алгебры: Сб. комплектов вариантов задач по курсу "Высшая математика". Ч. 1 / Урал. гос. техн. ин-т; Сост. О. А. Белослудцев, М. А. Вигура, Н. В. Кожевников, А. Ф. Рыбалко и др. ; Науч. ред. С. И. Машаров. Екатеринбург: УГТУ, 1997. 110 с. ISBN 5-230-17046-8.